

Threaded-Body Work Supports

max. operating pressure 500 bar

1 Description of the product

Hydraulic work supports are used to provide a self-adjusting rest for the workpiece during the machining operations. They compensate the workpiece surface irregularities, also deflection and vibration under machining loads.

The threaded-body design of the elements allows direct installation in clamping fixtures, in horizontal or vertical mounting position, and thereby a space-saving arrangement in critical installation conditions. Hydraulic oil is fed through drilled channels in the fixture body. Hydraulic locking is made together with hydraulic clamping of the workpiece, or independently.

There are three variations of plunger actuation:

1. Spring advanced; plunger extended in off-position.
2. Air pressure advanced; plunger retracted in off-position.
The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve.
3. Hydraulic pressure and spring advanced; the plunger is retracted in off-position. It moves forward with a light spring force against the workpiece, when hydraulic pressure is applied.

2 Validity of the documentation

This document applies to the following products:

Threaded-body work supports of data sheet B 1.950. The following types or part numbers are concerned:

- 1953-000, -001, -002
- 1955-000, -001, -012
- 1957-000*, -001*, -002*

*with metallic wiper edge

Table of contents

1 Description of the product	1
2 Validity of the documentation	1
3 Target group of this document	2
4 Symbols and signal words	2
5 For your safety	2
6 Application	2
7 Installation	3
8 Start up	6
9 Maintenance	7
10 Technical characteristics	8
11 Storage	8
12 Disposal	8
13 Declaration of manufacture	8

3 Target group of this document

- Specialists, fitters and set-up men of machines and installations with hydraulic expert knowledge.

Qualification of the personnel

Expert knowledge means that the personnel must

- be in the position to read and completely understand technical specifications such as circuit diagrams and product-specific drawing documents,
- have expert knowledge (electric, hydraulic, pneumatic knowledge, etc.) of function and design of the corresponding components.

An **expert** is somebody who has due to its professional education and experiences sufficient knowledge and is familiar with the relevant regulations so that he

- can judge the entrusted works,
- can recognize the possible dangers,
- can take the required measures to eliminate dangers,
- knows the acknowledged standards, rules and guidelines of the technology.
- has the required knowledge for repair and mounting.

4 Symbols and signal words

WARNING

Person damage

Stands for a possibly dangerous situation.

If it is not avoided, death or very severe injuries will result.

CAUTION

Easy injuries / property damage

Stands for a possibly dangerous situation.

If it is not avoided, minor injuries or material damages will result.

Hazardous to the environment

The symbol stands for important information for the proper handling with materials that are hazardous to the environment.

Ignoring these notes can lead to heavy damages to the environment.

Mandatory sign!

The symbol stands for important information, necessary protection equipment, etc.

NOTE

- This symbol stands for tips for users or especially useful information. This is no signal word for a dangerous or harmful situation.

5 For your safety

5.1 Basic information

The operating instructions serve for information and avoidance of dangers when installing the products into the machine as well as information and references for transport, storage and maintenance.

Only in strict compliance with these operating instructions, accidents and property damages can be avoided as well as trouble-free operation of the products can be guaranteed.

Furthermore, the consideration of the operating instructions will:

- avoid injuries

- reduce down times and repair costs,
- increase the service life of the products.

5.2 Safety instructions

The product was manufactured in accordance with the generally accepted rules of the technology.

Observe the safety instructions and the operating instructions given in this manual, in order to avoid personal damage or material damage.

- Read these operating instructions thoroughly and completely, before you work with the product.
- Keep these operating instructions so that they are accessible to all users at any time.
- Pay attention to the current safety regulations, regulations for accident prevention and environmental protection of the country in which the product will be used.
- Use the ROEMHELD product only in perfect technical condition.
- Observe all notes on the product.
- Use only accessories and spare parts approved by the manufacturer in order to exclude danger to persons because of not suited spare parts.
- Respect the intended use.

- You only may start up the product, when it has been found that the incomplete machine or machine, in which the product shall be mounted, corresponds to the country-specific provisions, safety regulations and standards.
- Perform a risk analysis for the incomplete machine, or the machine.

Due to the interactions between the product and the machine/fixture or the environment, risks may arise that only can be determined and minimized by the user, e.g. :

- generated forces,
- generated movements,
- Influence of hydraulic and electrical control,
- etc.

6 Application

6.1 Intended use

Work supports are used for industrial applications in order to protect workpieces against vibration and deflection.

Furthermore the following belongs to possible uses:

- Use within the capacity indicated in the technical data sheets.
- Use as per operating instructions.
- Compliance with service intervals.
- Qualified and trained personnel for the corresponding activities.
- Mounting of spare parts only with the same specifications as the original part.

They must only be operated with hydraulic oil.

6.2 Misapplication

⚠️ WARNING

Injuries, material damages or malfunctions!

- Do not modify the product!

⚠️ CAUTION

Transverse forces

The products are not suitable to compensate side loads.

The use of these elements is not admitted:

- On pallets or machine tool tables in primary shaping and metal forming machine tools.
- If due to vibrations or other physical / chemical effects damages of the elements or seals can be caused.
- On pallets or machine tool tables that are used to change the characteristics of the material (magnetise, radiation, photochemical procedures, etc.).
- In food industry.
- In mines.
- In hospitals.
- Offshore or near coasts.
- In explosive and aggressive environments.
- In the aerospace industry.
- In systems for passenger transportation.
- Single-acting elements must not be used as accumulator.
- The elements are not designed to compensate side loads.

7 Installation

⚠️ WARNING

Injury by high-pressure injection (squirting out of hydraulic oil under high pressure)!

- Improper connection can lead to escapes of oil under high pressure at the connections.
- Mounting or dismantling of the element must only be made in depressurised mode of the hydraulic system.
- Connection of the hydraulic line as per DIN 3852/ISO 1179.
- Unused connections have to be locked professionally.
- Use all mounting holes.

Injury by high-pressure injection (squirting out of hydraulic oil under high pressure)!

Wear, damage of the seals, ageing and incorrect mounting of the seal kit by the operator can lead to escapes of oil under high pressure.

- Before using them make a visual control.

Injury by falling parts!

- Keep hands and other parts of the body out of the working area.
- Wear personal protection equipment!

Poisoning due to contact with hydraulic oil!

Wear, damage of the seals, ageing and incorrect mounting of the seal kit by the operator can lead to escapes of oil.

Incorrect connection can lead to escapes of oil at the ports.

- For handling with hydraulic oil consider the material safety data sheet.
- Wear protection equipment.

⚠️ CAUTION

Great weight may fall

Some product types have a considerable weight. These have to be secured against working free during transport. Weight specifications see chapter "Technical characteristics".

Transverse forces and forced states to bolt

Side loads and forced conditions on the plunger lead to premature failure.

- Provide external guides.
- Avoid forced conditions (overdetermination) of the plunger. Do not introduce any torques.

ℹ️ NOTE

Vent connection

- If there is a possibility that aggressive cutting lubricants and coolants penetrate through the sintered metal air filter into the interior of single-acting products, a vent hose has to be connected and be placed in a protected position.
- It is absolutely necessary to follow the instructions for venting of the spring area see data sheet A 0.110.

7.1 Design

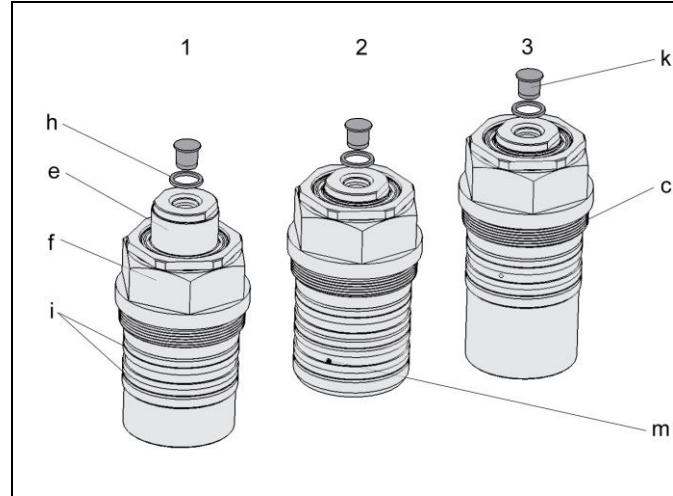


Figure 1: Components

1	Spring advanced; plunger extended in off-position.	c	Fixing possibility
2	Air-pressure advanced; plunger retracted in off-position	e	Plunger
3	Hydraulic pressure and spring advanced; the plunger is retracted in off-position	f	Body
		h	Kantseal
		i	Seals (O-ring, back-up ring)
		k	Transport safety device for Kantseal
		m	Venting port

Contact of the plunger by spring force (1)

The plunger is extended in off-position.

Contact of the plunger by pneumatic pressure (2)

The plunger is retracted in off-position. The pneumatically-actuated plunger allows precise setting of the plunger contact force by means of a pressure reducing valve.

Contact of the plunger by hydraulic pressure (3)

The plunger is retracted in off-position. It moves forward with a light spring force against the workpiece, when hydraulic pressure is applied. With increasing oil pressure, the support plunger locks hydraulically.

7.2 Instructions for safe operation

⚠ CAUTION

Transverse forces

The products are not suitable to compensate side loads.

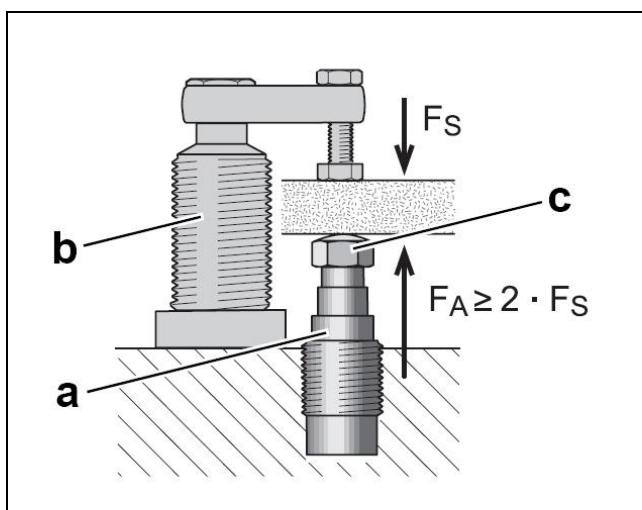


Figure 2: Principle, force flow during support

a Work support	c Contact bolt
b Swing clamp	

- Design the operating pressure so that support force F_A is more than twice the clamping force F_S . This reserve allows the compensation of machining forces.
- The recommended operating pressure is at least 100 bar.
- Operate the work supports only with mounted contact bolt to avoid damage of the plunger and penetration of liquids.
- Contact bolts and extensions with large weight can influence the functions of the work support.

ℹ NOTE

Receiving bore

- When using the versions with contact by air pressure and elements with vent port, pay attention that the location hole is not filled with oil.
- Otherwise oil can enter into the element and lead to malfunctions.

7.3 Admissible oil flow rate

⚠ WARNING

Injury due to overload of the element

High-pressure injection (squirting out of hydraulic oil under high pressure) or flying components!

- Due to throttling or closing of ports a pressure intensification can occur.
- Connect the ports professionally!

⚠ CAUTION

Maximum flow rates do not exceed

The maximum flow rate must not be exceeded.

7.3.1 Calculation of the admissible flow rate

Admissible oil flow rate

The admissible flow rate or the admissible stroke speed is valid for vertical mounting positions in combination with standard add-on parts as clamping arms or contact bolts, etc.

In case of other mounting positions and/or add-on parts the flow rate has to be reduced.

If the pump flow rate divided by the number of elements is larger than the admissible flow rate of one element, the flow rate has to be throttled.

This prevents an overload and therewith an early failure. The flow rate can be checked as follows:

$$Q_p \leq 0,06 \cdot V_z \cdot n \text{ and/or } Q_p \leq 6 \cdot v_z \cdot A_k \cdot n$$

for clamping elements and work supports (indicated on the data sheets)

Maximum piston speed

At specified pump flow rate Q_p and with the effective piston area A_k the piston speed can be calculated as follows:

$$v_m < \frac{Q_p}{6 \cdot A_k \cdot n}$$

Legend

• V_z = Admissible flow rate of the element in [cm³/s]

Q_p = Flow rate of the pump in [l/min]

A_k = Piston area in [cm²]

n = Number of elements, same dimensions

$v_z = v_m$ = Admissible/maximum stroke speed in [m/s]

ℹ NOTE

Oil volume

- The maximum oil volume and/or the maximum stroke speed depend on the corresponding product.
 - For clamping cylinders see data sheet A 0.100.
 - or clamping elements, work supports, hydraulic valves, power units and other hydraulic elements indicated on the corresponding data sheets.

Further "things worth knowing about hydraulic cylinders, basics, detailed knowledge and calculations on hydraulic cylinders" see in the [Technical library](#) on the internet!

or download

7.3.2 Throttling of the flow rate

The throttling always has to be effected in the supply line to the swing clamp. Only thus pressure intensification and thereby pressures exceeding the operating pressure are avoided. The hydraulic circuit diagram shows flow control valves which allow oil return from the element without any impediments.

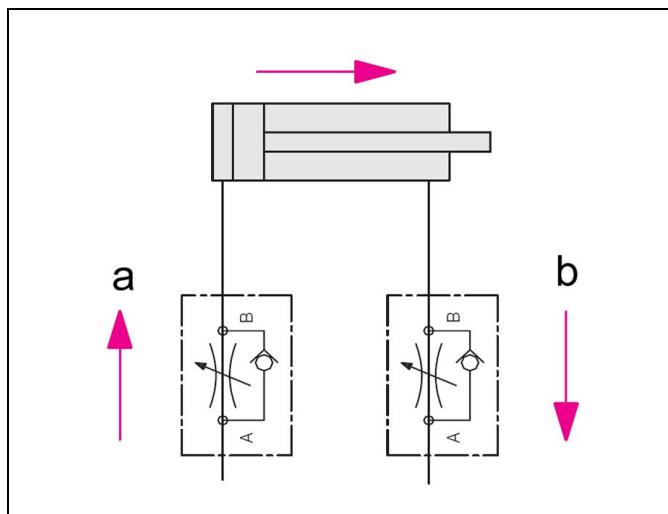


Figure 3: Hydraulic circuit diagram without flow control valves

a Throttling direction b Free flow

If a return-flow throttling is required due to a negative load, it must be guaranteed that the max. operating pressure (see technical characteristics) will not be exceeded.

7.4 Installation of products with external sealing

7.4.1 Design

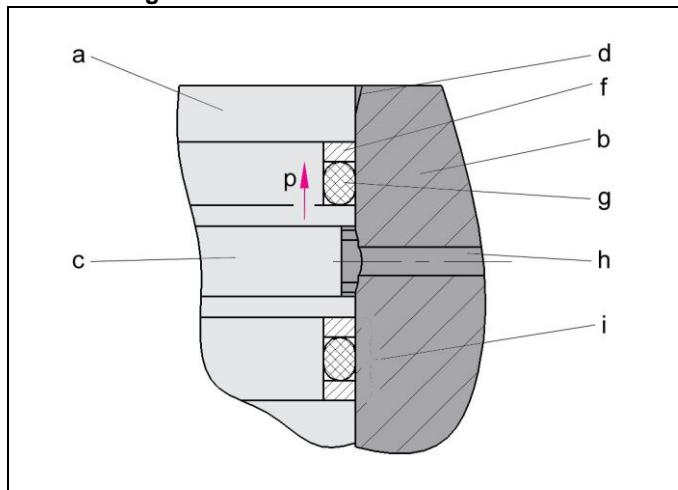


Figure 4: Components

a Body of the element	g O-ring seal
b Fixture body	h Supply bore holes in the fixture body
c Slot to transmit the hydraulic fluid	i Combination for pressure supply from both sides
d Insertion chamfer	p Pressure direction
e Back-up ring remote from the pressure side	

7.5 Installation

WARNING

Injury by crushing!

- Due to protruding components there can be pinch points during installation.
- Keep hands and fingers away from pinch points!

Injury by cutting!

- Sharp-edged threads can cause cut injuries.
- Wear personal protection equipment!

For works at and with the product, wear protective gloves!

Before starting the installation check the following:

- Is the location hole made as per data sheet?
 - Are the indicated tolerances and surfaces kept?
 - Is the wall thickness in the fixture sufficient?
- Are the tapers in the fixture made as per drawing?
- Are the bore holes in the installation geometry are deburred and round?
- Are machining residues as swarf, dirt and foreign particles removed?
- Are crests of threads covered?
- Are seals and components greased or lubricated before installation?
 - Pay attention to compatibility of seals with the medium!
 - It is recommended to use the medium to be sealed for lubrication.
- Do not use grease with additions of solids as molybdenum sulphite or zinc sulphite.
- Do not use sharp objects for installation!
- Pay attention to protruding back-up rings. Use aids for correct positioning.
- Use always installation aids, if possible.

Procedure for installation

1. Insert seals.
2. Insert or screw in into location hole.
3. Screw in or fasten, pay attention to smooth running. Pay attention that the seals will not be damaged.
4. Fasten with corresponding tightening torque (see general characteristics).
See chapter Technical characteristics.

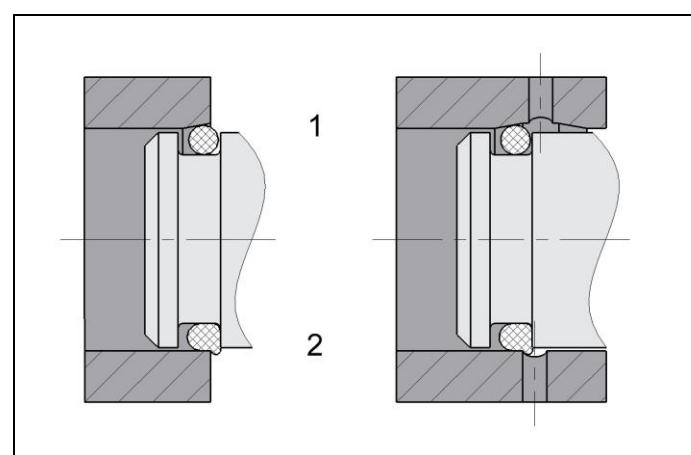


Figure 5: Installation with insertion chamfer and cross hole

1 Correct with chamfer

2 Incorrect without chamfer

7.5.1 Connection of the hydraulic equipment

1. Connect hydraulic lines to qualifying standards and pay attention to scrupulous cleanliness (A = Extend, B = Retract)

NOTE

More details

- See ROEMHELD data sheets A 0.100, F 9.300, F 9.310 and F 9.360.

Screwed Plug

- Use only fittings "screwed plug B and E" as per DIN 3852 (ISO 1179).

hydraulic connection

- Do not use sealing tape, copper rings or coned fittings.

Pressure fluids

- Use hydraulic oil as per ROEMHELD data sheet A 0.100.

7.6 Applications with coolants

Adjustment of the coolant jet

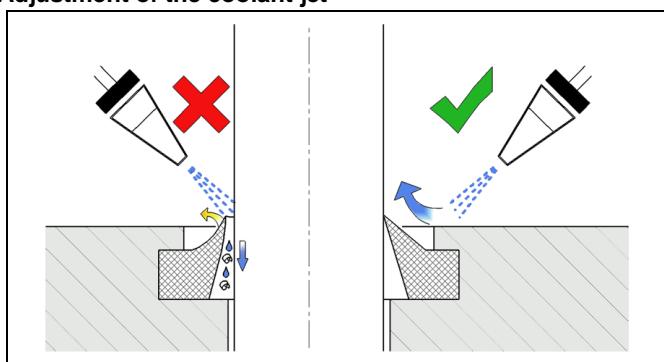


Figure 6: Swarf entry by direct coolant jet

NOTE

Entry of coolants and swarf

Wipers are sealing elements made of elastomer materials.

High pressure coolant and their turbulences, as well as a direct jet can cause a lifting of the elastic lip of the wiper. As a result of this, coolants and swarf can enter.

- When adjusting the coolant jet, pay attention to an indirect flushing.

Suction of coolants

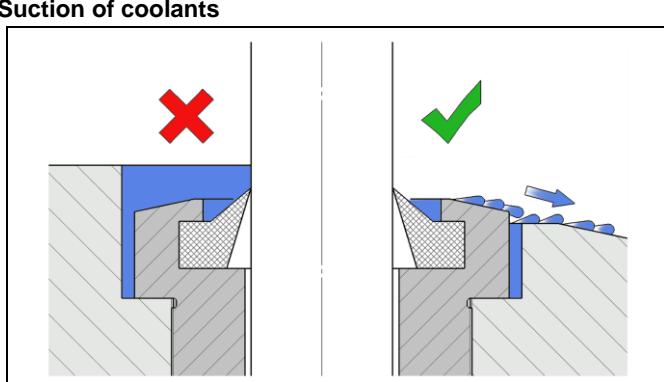


Figure 7: Discharge of coolants, using the example of a screw-in element

NOTE

Suction of coolants

In case of insufficient venting, some products tend to suck in ambient media via the wiper.

This can lead to the penetration of coolants and swarf.

- When designing the fixtures pay attention that the coolants can drain.
- If required, only unclamp after the coolant has drained or has been removed.

7.7 Leakage due to the system

The piston rod is set in motion by the hydraulic oil to perform the clamping task.

The hydraulic oil must be sealed at the piston rod to the atmosphere. During extension of the piston rod, the hydraulic oil must remain in the cylinder.

For ROEMHELD products, sealing systems are used for the piston rod, generally consisting of several sealing elements. Those sealing systems enable the sealing points to be absolutely leak-proof in the total specified pressure area, when the system is not in operation. Neither does oil escape at the piston rod, nor is oil transferred from the piston side and piston rod side.

Important: ROEMHELD products do not leak oil when static. To ensure an adequate working life, the sealing systems must be lubricated by the hydraulic fluid while in motion, in dynamic operation. Since the hydraulic fluid must reach the sealing lip, a certain amount of oil is lost from leakage, in the process. According to the used sealing and the corresponding application conditions the amount can be very different depending on the product group. However the leakage should be very little (see A 0.100 General characteristics of hydraulic equipment).

Leakage-free cylinders (leakage re-circulation or special sealing) are available on request.

8 Start up

WARNING

Poisoning due to contact with hydraulic oil!

Wear, damage of the seals, ageing and incorrect mounting of the seal kit by the operator can lead to escapes of oil.

Incorrect connection can lead to escapes of oil at the ports.

- For handling with hydraulic oil consider the material safety data sheet.
- Wear protection equipment.

CAUTION

Operating pressure of 500 bar does not exceed

The maximum operating pressure of 500 bar must not be exceeded.

1. Check tight seat.
2. Check tight seat of the hydraulic ports (check tightening torque of the hydraulic ports).
3. Bleed the hydraulic system.

NOTE

Clamping time

- Without bleeding the clamping time will be considerably prolonged and function problems may occur.

8.1 Bleeding of manifold-mounted types

1. Loosen carefully the bleeding screws of the fixture at low pressure.
2. Pump until bubble free oil comes out.
3. Fasten the bleeding screws.
4. Check correct function.
5. Check sealing of the hydraulic connections!

9 Maintenance

⚠ WARNING

Burning due to hot surface!

- In operating conditions, surface temperatures of more than 70 °C can appear at the product.
- All maintenance and repair works must only be effected in cooled mode or with safety gloves.

Injury by crushing!

- Due to the stored energy, an unexpected start of the product can occur.
- Maintenance works at the product must only be made in de-pressurised mode!
- Keep hands and other parts of the body out of the working area!

9.1 Cleaning

⚠ CAUTION

Avoid damages of the moved components

Avoid damages of the moved components (rods, plungers, bolts, etc.) as well as of wiper and seal.

Aggressive cleaning agents

The product must not be cleaned with:

- Corrosive or corroding components or
- Organic solvents as halogen or aromatic hydrocarbons and ketones (cellulose thinner, acetone, etc.), because this can destroy the seals.

The product must be cleaned at regular intervals, especially the area of the piston or the plunger housing has to be cleaned from swarf and other liquids.

In the case of heavy contamination, cleaning must be made at shorter intervals.

ⓘ Note

Special care must be taken with:

- dry machining
- minimum quantity lubrication and
- small grinding swarf

Small swarf and dust can stick to the rod / plunger of the element and be pulled into the sealing gap of the metallic wiper edge.

Thus, a sticky / pasty mass of swarf / dust can arise that hardens during standstill.

Result: Malfunction due to deadlock / bonding and increased wear.

Remedy: Regular cleaning of the piston rod/support plunger in the effective area of the wiper.

9.1.1 Regular checks

1. Check tightness of hydraulic connections (visual control).
2. Check running surfaces (of the piston rod or bolt) if there are marks and scratches. Traces of marks can be an indication for a contaminated hydraulic system or an inadmissible side load of the block cylinder.
3. Leakage check at the housing - piston rod, bolt or flange.
4. Clamping force control by pressure control.
5. Check if the maintenance intervals are kept.

9.2 Exchange seal kit

The exchange of the seal kit is made in case of external leakages. For high availability, the seals have to be changed at the latest after 1,000,000 cycles or 2 years.

The seal kit is available as spare part. An instruction for the exchange of the seal kit is available on request.

ⓘ NOTE

Seal Kits

- Do not install seal kits which were exposed to light for a longer time.
- Pay attention to the storage conditions (see chapter "Technical characteristics").
- Only use original seals.

9.3 Trouble shooting

Trouble	Cause	Remedy
Plunger does not extend	Oil flow rate too high	Reduce oil flow rate
	Inner parts corroded	Repair required by ROEMHELD
	Penetration of cooling liquids	Repair required by ROEMHELD
	Broken spring	Repair required by ROEMHELD
Plunger does not retract	Inner parts corroded	Repair required by ROEMHELD
	Penetration of cooling liquids	Repair required by ROEMHELD
	Broken return spring	Repair required by ROEMHELD
Plunger moves back	Operating pressure not sufficient	Check the dimensioning of the operating pressure as per catalogue Adjust the operating pressure correspondingly
	Load (clamping and machining force) too high	Check dimensioning of the load Adjust the operating pressure correspondingly Use other elements (work support/swing clamp)

10 Technical characteristics

General characteristics

Types	Maximum operating pressure [bar]	Adm. load force [kN]
1953-00X	500	16.8
1955-0XX	500	42.0
1957-00X	500	102.0

Types	Tightening torques [Nm]
1953-00X	80
1955-0XX	200
1957-00X	750

NOTE

Further information

- For further technical data see ROEMHELD data sheet.

11 Storage

CAUTION

Storage of components!

- The product may not be exposed to direct solar radiation, because the UV light can destroy the seals.
- A storage differing from the storage conditions is inadmissible.
- In case of improper storage, the seals can embrittle and resinification of the anti-corrosive oil or corrosion at the element can occur.

The elements are tested by default with mineral oil. The exterior of the elements is treated with a corrosion inhibitor.

The oil film remaining after the test provides for a six-month interior corrosion protection, if stored in dry and uniformly tempered rooms.

For longer storage times, the element has to be filled with a non-resinifying corrosion inhibitor and the outside surfaces must be treated.

12 Disposal

Hazardous to the environment

Due to possible environmental pollution, the individual components must be disposed only by an authorised expert company.

The individual materials have to be disposed as per the existing regulations and directives as well as the environmental conditions.

Special attention has to be drawn to the disposal of components with residual portions of hydraulic fluids. The instructions for the disposal at the material safety data sheet have to be considered.

For the disposal of electrical and electronic components (e.g. stroke measuring systems, proximity switches, etc.) country-specific legal regulations and specifications have to be kept.

13 Declaration of manufacture

Manufacturer

Römhild GmbH Friedrichshütte
 Römhildstraße 1-5
 35321 Laubach, Germany
 Tel.: +49 (0) 64 05 / 89-0
 Fax: +49 (0) 64 05 / 89-211
 E-mail: info@roemheld.de
 www.roemheld.com

Declaration of manufacture of the products

Threaded-body work supports of data sheet B 1.950. The following types or part numbers are concerned:

- 1953-000, -001, -002
- 1955-000, -001, -012
- 1957-000*, -001*, -002*

*with metallic wiper edge

They are designed and manufactured in line with the relevant versions of the directives **2006/42/EC** (EC MSRL) and in compliance with the valid technical rules and standards.

In accordance with EC-MSRL and EN 982, these products are components that are not yet ready for use and are exclusively designed for the installation in a machine, a fixture or a plant.

According to the pressure equipment directives the products are not to be classified as pressure reservoirs but as hydraulic placing devices, since pressure is not the essential factor for the design, but the strength, the inherent stability and solidity with regard to static or dynamic operating stress.

The products may only be put into operation after it was assessed that the incomplete machine/machine, in which the product shall be installed, corresponds to the machinery directives (2006/42/EC).

The manufacturer commits to transmit the special documents of the products to state authorities on request.

The technical documentation as per appendix VII part B was prepared for the products.

Responsible person for the documentation:

Dipl.-Ing. (FH) Jürgen Niesner, Tel.: +49(0)6405 89-0.

Römhild GmbH

Friedrichshütte

Laubach, 31.03.2016